Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade: 0.1</th>
<th>Issued: 06/22/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Rolled Sheet</td>
<td></td>
</tr>
<tr>
<td>Alloy: 316LSS</td>
<td></td>
</tr>
<tr>
<td>Thickness: 0.039 inches</td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing Specifications

<table>
<thead>
<tr>
<th></th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch of Hg</td>
<td>Liquid, (K_L) = 270</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>Gas, (K_G) = 1900</td>
<td></td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td></td>
<td>90% at 0.15 (\mu) m</td>
</tr>
<tr>
<td>Young’s Modulus, (x 10^6) psi</td>
<td></td>
<td>99% at 0.4 (\mu) m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.9% at 0.8 (\mu) m</td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid

\[
(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Gas: Pressure Drop, psid

\[
(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Flow Characteristics

Liquid: Pressure Drop, psid

- 100 cp
- 50 cp
- 20 cp
- 10 cp
- 5 cp
- 2 cp
- 1 cp

Air Flow, acfm/ft²

- 100
- 10
- 1

Pressure Drop, psid

- 100
- 10
- 1

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:

1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6353 Fax 860-747-6739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 0.2
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.039 inches
Issued: 06/22/10

Manufacturing Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch of Hg</td>
<td>5.0 - 6.9</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>26.0</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>24.0</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Permeability Coefficient

<table>
<thead>
<tr>
<th>Medium</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid, K_L</td>
<td>90</td>
</tr>
<tr>
<td>Gas, K_G</td>
<td>700</td>
</tr>
</tbody>
</table>

Particle Removal Efficiency

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Testing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Efficiency</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td></td>
<td>90% at 0.5 µm</td>
</tr>
<tr>
<td></td>
<td>99% at 0.9 µm</td>
</tr>
<tr>
<td></td>
<td>99.9% at 1.4 µm</td>
</tr>
</tbody>
</table>

Air Efficiency

- Tested at flux of 6 acfm/ft²
- >90% for all particle sizes
- >99% for all particle sizes
- 99.9% at 0.2 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Pressure Drop Formulas:

- **Liquid: Pressure Drop, psid =**
 \[(K_L \cdot \text{Flux, gpm/ft}^2 \cdot \text{Visc, cp} \cdot \text{Thck, inch}) \]

- **Gas: Pressure Drop, psid =**
 \[(K_G \cdot \text{Flux, acfm/ft}^2 \cdot \text{Visc, cp} \cdot \text{Thck, inch}) \]

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Media Grade: 0.5
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.047 inches

Manufacturing Specifications
Bubble Point, inch of Hg 3.0 - 3.9
Minimum Tensile, kpsi 21.0
Yield Strength, kpsi 19.0
Young’s Modulus, x 10⁶ psi 9.5

Permeability Coefficient
Liquid, \(K_L \) 20
Gas, \(K_G \) 190

Bubble Point, inch of Hg
Liquid: \(\text{Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)
Gas: \(\text{Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

Particle Removal Efficiency
Liquid Efficiency
90% at 1 µm
99% at 1.7 µm
99.9% at 2.2 µm

Air Efficiency
>90% for all particle sizes
99% at 0.25 µm
99.9% at 0.3 µm

Notes:
1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula
3 - Tests run with air at 70 °F
4 - Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Manufacturing Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch of Hg</td>
<td>2.0 - 2.5</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>17.0</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>15.0</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Permeability Coefficient

<table>
<thead>
<tr>
<th>Phase</th>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>(K_L)</td>
<td>9.2</td>
</tr>
<tr>
<td>Gas</td>
<td>(K_G)</td>
<td>75</td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid

\[
\text{Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)\text{(Visc, cp)}\text{(Thck, inch)}
\]

Gas: Pressure Drop, psid

\[
\text{Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)\text{(Visc, cp)}\text{(Thck, inch)}
\]

Particle Removal Efficiency

Liquid Efficiency

- 90% at 1.5 µm
- 99% at 2.2 µm
- 99.9% at 3.3 µm

Testing per ASTM F795, tested at 1 gpm/ft².

Air Efficiency

- >90% for all particle sizes
- 99% at 0.35 µm
- 99.9% at 0.7 µm

Tested at flux of 6 acfm/ft².

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula.

Flow Characteristics

Liquid Flow, gpm/ft² vs. Pressure Drop, psid

Air Flow, acfm/ft² vs. Pressure Drop, psid

Notes:

1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere.

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
950-747-0333 Fax 860-747-6739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Media Grade: 2
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.062 inches
Issued: 06/22/10

Manufacturing Specifications
Bubble Point, inch water 17.0 - 24.0
Minimum Tensile, kpsi 13.2
Yield Strength, kpsi 10.8
Young’s Modulus, x 10^6 psi 5.7

Permeability Coefficient
Liquid, \(K_L \) 3.5
Gas, \(K_G \) 30

Particle Removal Efficiency
Liquid Efficiency
90% at 4 \(\mu \)m
99% at 5.5 \(\mu \)m
99.9% at 9 \(\mu \)m

Gas Efficiency
90% at 4 \(\mu \)m
99% at 5.5 \(\mu \)m
99.9% at 9 \(\mu \)m

Notes:
1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula

Notes:
1 - Tests run with air at 70 °F
2 - Tests run with upstream pressure exhausting to atmosphere

Mott Porous Metal Data Sheet

Liquid: Pressure Drop, psid =
\((K_L) (\text{Flux, gpm/ft}^2) (\text{Visc, cp}) (\text{Thck, inch}) \)

Gas: Pressure Drop, psid =
\((K_G) (\text{Flux, acfm/ft}^2) (\text{Visc, cp}) (\text{Thck, inch}) \)

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 5
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.062 inches
Issued: 06/22/10

Manufacturing Specifications
- **Bubble Point, inch water:** 13.0 - 16.9
- **Minimum Tensile, kpsi:** 9.2
- **Yield Strength, kpsi:** 8.5
- **Young’s Modulus, x 10^6 psi:** 4.1

Permeability Coefficient
- **Liquid, K_L:** 1.5
- **Gas, K_G:** 15

Liquid: Pressure Drop, psid = (K_L)(Flux, gpm/ft²)(Visc, cp)(Thck, inch)

Gas: Pressure Drop, psid = (K_G)(Flux, acfm/ft²)(Visc, cp)(Thck, inch)

Particle Removal Efficiency
- **Liquid Efficiency**
 - 90% at 5 µm
 - 99% at 8 µm
 - 99.9% at 13 µm

- **Gas Efficiency**
 - 90% at 0.8 µm
 - 99% at 2 µm
 - 99.9% at 5 µm

Flow Characteristics
- **Liquid Flow, gpm/ft²**
- **Pressure Drop, psid**
 - 0.1
 - 1
 - 10
 - 100

- **Air Flow, acfm/ft²**
- **Pressure Drop, psid**
 - 0.1
 - 1
 - 10
 - 100

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:
1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 10
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.062 inches
Issued: 06/22/10

Manufacturing Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>7.5 - 10.9</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>7.5</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>6.0</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Permeability Coefficient

- **Liquid**: $K_L = 0.7$
- **Gas**: $K_G = 7.0$

Particle Removal Efficiency

- **Liquid Efficiency**:
 - 90% at 10 µm
 - 99% at 15 µm
 - 99.9% at 20 µm

- **Gas Efficiency**:
 - 90% at 4.5 µm
 - 99% at 8 µm
 - 99.9% at 13 µm

Flow Characteristics

- **Liquid Flow, gpm/ft²**
 - Pressure drop, psid =
 - $K_L (\text{Flux, gpm/ft}^2) (\text{Visc, cp}) (\text{Thck, inch})$
- **Air Flow, acfm/ft²**
 - Pressure drop, psid =
 - $K_G (\text{Flux, acfm/ft}^2) (\text{Visc, cp}) (\text{Thck, inch})$

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 20
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.062 inches
Issued: 06/22/10

Manufacturing Specifications
- Bubble Point, inch water: 4.5 - 7.0
- Minimum Tensile, kpsi: 5.7
- Yield Strength, kpsi: 5.0
- Young’s Modulus, x 10^6 psi: 2.5

Permeability Coefficient
- Liquid, \(K_L \): 0.35
- Gas, \(K_G \): 4.7

Particle Removal Efficiency
- Liquid Efficiency: Testing per ASTM F795
 - 90% at 20 µm
 - 99% at 25 µm
 - 99.9% at 35 µm
- Air Efficiency: Tested at flux of 6 acfm/ft²
 - 90% at 8 µm
 - 99% at 12 µm
 - 99.9% at 20 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using \(K_L \)

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade:</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Rolled Sheet</td>
</tr>
<tr>
<td>Alloy:</td>
<td>316LSS</td>
</tr>
<tr>
<td>Thickness:</td>
<td>0.078 inches</td>
</tr>
</tbody>
</table>

Manufacturing Specifications
- Bubble Point, inch water: 2.5 - 4.0
- Minimum Tensile, kpsi: 4.0
- Yield Strength, kpsi: 3.5
- Young's Modulus, x 10^6 psi: 1.9

Permeability Coefficient
- Liquid, K_L: 0.30
- Gas, K_G: 2.9

Particle Removal Efficiency
- Liquid Efficiency
 - 90% at 25 µm
 - 99% at 35 µm
 - 99.9% at 45 µm

- Air Efficiency
 - 90% at 12 µm
 - 99% at 25 µm
 - 99.9% at 45 µm

Manufacturing Specifications Equations
- **Liquid: Pressure Drop, psid**
 \[(K_L)(Flux, gpm/ft^2)(Visc, cp)(Thck, inch) \]
- **Gas: Pressure Drop, psid**
 \[(K_G)(Flux, acfm/ft^2)(Visc, cp)(Thck, inch) \]

Graphs
- Liquid Flow vs. Pressure Drop
- Air Flow vs. Pressure Drop

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using K_L

Flow Characteristics
- Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 100
Type: Rolled Sheet
Alloy: 316LSS
Thickness: 0.093 inches

Issued: 06/22/10

Manufacturing Specifications

- Bubble Point, inch water: 0.5 - 1.5
- Minimum Tensile, kpsi: 1.3
- Yield Strength, kpsi: 1.0
- Young’s Modulus, x 10⁶ psi: 1.4

Permeability Coefficient

- Liquid, K_L: 0.20
- Gas, K_G: 1.9

Permeability Coefficient Calculations:

Liquid: Pressure Drop, psid =

\[(K_L)(Flux, gpm/ft²)(Visc, cp)(Thick, inch)\]

Gas: Pressure Drop, psid =

\[(K_G)(Flux, acfm/ft²)(Visc, cp)(Thick, inch)\]

Particle Removal Efficiency

- **Liquid Efficiency:** Testing per ASTM F795
 - 90% at 50 µm
 - 99% at 100 µm
 - 99.9% at 150 µm

- **Gas Efficiency:** Tested at flux of 6 acfm/ft²
 - 90% at 20 µm
 - 99% at 40 µm
 - 99.9% at 100 µm

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using K_L

Air Efficiency

Notes:

1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.