FUEL CELL SEPARATION MEMBRANES, CATALYST SUPPORT STRUCTURES & BATTERY CATHODE/ANODE MATERIALS

MISSION CRITICAL PRECISION

SUPERIOR CELL PERFORMANCE

- Lowest ohmic, activation and mass transport resistance/losses
- Options of alloys such as Ti, Ni, or completely custom alloys
- Thinnest sheet available down to 0.010" thickness
- Open microstructures up to 60% porosity

SUPERIOR QUALITY

- Quality manufacturing that eliminates significant part-to-part variation and visual defects that result in product rejection
- Eliminate inspection and quality steps in your process by relying on Mott quality guarantees

SUPERIOR RELIABILITY

- Superior raw materials used, resulting in strong structure that can withstand on/off cycling, quick startups, and last for years under intense usage
- Proprietary manufacturing processes, resulting in more uniform porosity and sheet strength

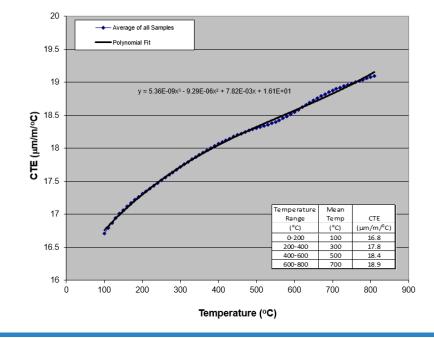
PROTOTYPE TO HIGH VOLUME MANUFACTURING

- Preliminary concept design and modeling
- Small quantity performance trials
- Scale up to 100K's+ manufacturing

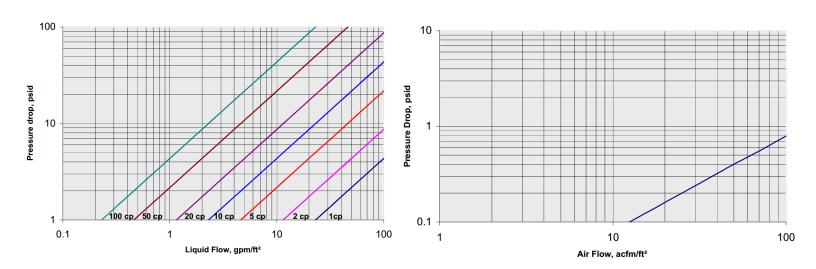
Porous-to-Solid 3D Printing Available

ENGAGE WITH US

When it comes to custom designs, our expertise is unmatched. With nearly 60 years of experience in porous metal, let us design a component that is optimal for your application.


 $Contact \, us \, directly \, at info @mottcorp.com \, or \, call \, 860-747-6333$

SPECIFICATIONS


Available Materials	316L SS, Titanium, Nickel 200, 430SS, and various other corrosion resistant alloys	
Porosity	16% to 60% open	
Thickness Variation	Typically +/- 0.001" (0.025 mm)* *Custom development options available	
Dimensions	Dependent of configuration and manufacturing method selected	

THERMAL EXPANSION

Thermal expansion for Mott porous materials is equivalent to solid materials of the same composition

PRESSURE DROP - 10 MEDIA GRADE

