

Additive Manufacturing Overview

METAL SOLID & POROUS 3D PRINTING OVERVIEW

Lack of density gradients in 3DP parts can provide more uniform flow throughout the surface of a part

Consistent pore size distribution with 3DP parts

Ability to **print geometries that are not practical with conventional** pressing or have prohibitively expensive tooling

Print solid and porous media in one part (avoiding secondary operations such as welding, sinter-bonding, press-fitting)

Print multiple porosities in one part (i.e. 60 micron pre-filter + 2 micron diffuser)

Avoids secondary operations such as assembly, welding, press-fitting and sinter-bonding

BUILD FEATURES & TOLERANCES - METAL

Build volume: 9.7" x 9.7" x 11.0" (L x W x H)

Build materials: 316L Stainless Steel, Titanium, other alloys

consult engineering

Solid feature size resolution: +/- 0.01"

Porous feature size resolution: +/- 0.02"

Porosity range: 1 to 100+ micron pore size (for custom

porosity consult engineering)

Part-part dimensional consistency: +/- 0.001-0.002"

Density consistency: +/- 0.07-0.1 g/cc

Solid printed surface finish: 350 Ra µin

Machined surface finish: 5 to 32 Ra μin

(same as typical hardware)

Build plate

Laser Powder Bed Fusion

FLOW-DP PERFORMANCE

When density gradients mess up your product specs, think 3DP!

Higher flow for 3DP media is likely the result of the lack of density gradients

EXAMPLE UNIQUE DESIGNS MADE CAPABLE BY ADDITIVE

Example integrated filter hardware & complex porous shapes (ie spheres)

Complex solid-porous filtration structures

Example multi-dense porous used for thermal management application

Complete fully 3D printed products with unique internal fluidics for new applications (ie Integrated Valves, Mixing and Flow Reaction)

BUILD FEATURES & TOLERANCES - POLYMER

Build volume:

Prototypes: 15.7" W x 11.8" D x 11.8" H (400mm x 300mm x 300mm)

Production: 18.0" W x 18.0" D x 32.0" H (457mm x 457mm x 813mm)

Build materials: PEEK, PEKK, PEI, Nylon, ABS, Polyethylene, and more

Porosity range: 100 microns and larger; for custom porosity integration, consult engineering

Pore shape:

Lattice: Rectangular, Hexagonal, Triangular

Random: Under Development

Solid feature size resolution and dimensional consistency*

As Printed: +/- 0.010"

Machined: +/- 0.002"

Part density: Up to 100% depending on polymer

Surface finish

As printed: 200 to 600 Ra μin

Machined: 5 to 32 Ra μin

Fused Deposition Modeling (FDM)

^{*} Dimensions and tolerances are subject to the polymer chosen and overall part dimensions. Values presented are typical for small parts, <1" (25mm) cross section printed in PEEK with a medium resolution extrusion nozzle.

EARLY STAGE DEVELOPMENTS: POLYMERS AND CERAMICS

PEEK Static Mixer, Tooling, Filter

Alumina Flow Control Components

ABOUT US

WHO WE ARE: THE GOLD STANDARD FOR HIGH PERFORMANCE FILTRATION AND FLOW CONTROL APPLICATIONS

<u>60 year track record</u> of making products used by the most demanding customers such as NASA, Samsung, and Medtronic

<u>Largest installed base</u> of porous metal filters/fluid controls in the world across every major industry ranging from the Mars rover to implantable medical devices

Most extensive metal alloy selection for the toughest operating conditions such as temps from -437°F to 3336°F

<u>Customer Innovation Center (CIC)</u> becoming a hub for industry leader collaboration, with the latest lab equipment and new technologies like additive porous manufacturing and materials development.

Manufacturing and CIC based in Farmington, CT.

CAPABILITY SPANS BREADTH OF APPLICATIONS

Large Scale Process Systems

Point of Use **Equipment**

Integrated Components

WIDE RANGE OF APPLICATION EXPERTISE

GAS & LIQUID FILTRATION

FLOW CONTROL

MIXING

DIFFUSION

HEAT EXCHANGE WICKING & PHASE SEPARATION

FLUIDIZING

FLAME ARRESTING

SPARGING

STRUCTURAL

CONTROLLED RELEASE

SOUND DAMPENING

COLLABORATION MODEL

ANALYSIS

Mott's state-of-the-art lab performs test and analysis data **Report and explain results**

PRODUCTION

Mott's prototype goes to HVM Highest quality, best in class delivery (>99% OTOC)

OPTIMIZATION

Mott's innovative testing Continuous improvement

"Bird in the hand..."

Prototypes ready in days

DESIGN

Mott Consultation

Material, porosity, shape, flow rate, etc.

IDEA

Mott Application and Design Engineer Support **Optimize your idea**

