Manufacturing Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>7.5 - 10.9</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>7.5</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>6.0</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Permeability Coefficient

<table>
<thead>
<tr>
<th>Type</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid, K_L</td>
<td>0.7</td>
</tr>
<tr>
<td>Gas, K_G</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Particle Removal Efficiency

- **Liquid Efficiency**: Testing per ASTM F795
 - 90% at 10 µm
 - 99% at 15 µm
 - 99.9% at 20 µm

- **Air Efficiency**: Tested at flux of 6 acfm/ft²
 - 90% at 4.5 µm
 - 99% at 8 µm
 - 99.9% at 13 µm

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics

Liquid Flow, gpm/ft² vs. Pressure Drop, psid

- $\text{Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$

Air Flow, acfm/ft² vs. Pressure Drop, psid

- $\text{Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$

Notes:

1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

mott corporation
84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.