Mott Porous Metal Data Sheet

Media Grade: 0.2
Type: Pressed Disc
Alloy: 316LSS
Thickness: 0.125 inches

Issued: 06/25/10

Manufacturing Specifications
Bubble Point, inch of Hg 5.0 - 6.9
Minimum Tensile, kpsi --
Yield Strength, kpsi --
Young's Modulus, x 10^6 psi --

Permeability Coefficient
Liquid, K_L 20
Gas, K_G 400

Particle Removal Efficiency
Liquid Efficiency
90% at 0.35 μm, Tested at 1 gpm/ft²
99% at 0.7 μm
99.9% at 1.1 μm

Air Efficiency Test at flux 6 acfm/ft²
>99.9% for all particle sizes

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics on these data sheets are typical and should be used for general reference only.

Liquid: Pressure Drop, psid =

Gas: Pressure Drop, psid =

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com
Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade:</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Pressed Disc</td>
</tr>
<tr>
<td>Alloy:</td>
<td>316LSS</td>
</tr>
<tr>
<td>Thickness:</td>
<td>0.125 inches</td>
</tr>
</tbody>
</table>

Manufacturing Specifications
- Bubble Point, inch of Hg: 3.0 - 3.9
- Minimum Tensile, kpsi: 21.1
- Yield Strength, kpsi: 11.5
- Young’s Modulus, x 10^6 psi: 8.3

<table>
<thead>
<tr>
<th>Permeability Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid, K_L</td>
</tr>
<tr>
<td>Gas, K_G</td>
</tr>
</tbody>
</table>

Particle Removal Efficiency
- Liquid Efficiency: Testing per ASTM F795
 - 90% at 0.8 µm
 - 99% at 1.4 µm
 - 99.9% at 1.8 µm
- Gas Efficiency: Tested at 1 gpm/ft²
- Air Efficiency: Tested at flux of 6 acfm/ft²
 - >99.9% for all particle sizes

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Equations:
- **Liquid:** Pressure Drop, psid = $(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$
- **Gas:** Pressure Drop, psid = $(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$

Flow Characteristics:
- sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Pressed Disc</td>
</tr>
<tr>
<td>Alloy:</td>
<td>316LSS</td>
</tr>
<tr>
<td>Thickness:</td>
<td>0.125 inches</td>
</tr>
</tbody>
</table>

Manufacturing Specifications
- Bubble Point, inch water: 17.0 - 24.0
- Minimum Tensile, kpsi: 12.8
- Yield Strength, kpsi: 7.2
- Young's Modulus, x 10^6 psi: 5.1

Permeability Coefficient
- Liquid, K_L: 1.25
- Gas, K_G: 22

Particle Removal Efficiency
- **Liquid Efficiency**
 - 90% at 3.5 µm
 - 99% at 5 µm
 - 99.9% at 8 µm
- **Air Efficiency**
 - Tested at flux of 6 acfm/ft²
 - 90% at 0.2 µm
 - 99% at 0.4 µm
 - 99.9% at 1.3 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Liquid: Pressure Drop, psid

\[
(L) = \left(K_L \right) \times \left(\text{Flux, gpm/ft}^2 \right) \times \left(\text{Visc, cp} \right) \times \left(\text{Thck, inch} \right)

Gas: Pressure Drop, psid

\[
(G) = \left(K_G \right) \times \left(\text{Flux, acfm/ft}^2 \right) \times \left(\text{Visc, cp} \right) \times \left(\text{Thck, inch} \right)

Notes:
1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.

mott corporation
84 Spring Lane, Farmington, CT 06032-5159
860-747-6333 Fax 860-747-6739
www.mottcorp.com
Manufacturing Specifications

- **Bubble Point, inch water**: 13.0 - 16.9
- **Minimum Tensile, kpsi**: 9.5
- **Yield Strength, kpsi**: 6.8
- **Young’s Modulus, x 10^6 psi**: 3.7

Permeability Coefficient

- **Liquid**: \(K_L \) = 0.85
- **Gas**: \(K_G \) = 10

Particle Removal Efficiency

- **Liquid Efficiency**: Tested per ASTM F795
 - 90% at 4.5 \(\mu \)m
 - 99% at 7 \(\mu \)m
 - 99.9% at 11 \(\mu \)m

- **Air Efficiency**: Tested at flux of 6 acfm/ft²
 - 90% at 0.5 \(\mu \)m
 - 99% at 1.3 \(\mu \)m
 - 99.9% at 3.5 \(\mu \)m

Flow Characteristics

- **Liquid**: Pressure Drop, psid = \((K_L)(Flux, \text{ gpm/ft}^2)(Visc, \text{ cp})(Thck, \text{ inch})\)
- **Gas**: Pressure Drop, psid = \((K_G)(Flux, \text{ acfm/ft}^2)(Visc, \text{ cp})(Thck, \text{ inch})\)

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:

1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics

These data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 10
Type: Pressed Disc
Alloy: 316LSS
Thickness: 0.125 inches
Issued: 06/25/10

<table>
<thead>
<tr>
<th>Manufacturing Specifications</th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>Liquid, K_L 0.45</td>
<td>Liquid Efficiency</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>Gas, K_G 7.0</td>
<td>90% at 9 µm</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td></td>
<td>99% at 14 µm</td>
</tr>
<tr>
<td>Young's Modulus, $x 10^6$ psi</td>
<td></td>
<td>99.9% at 18 µm</td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid =

\[(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thick, inch})\]

Gas: Pressure Drop, psid =

\[(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thick, inch})\]

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Diagrams

Liquid Flow vs. Pressure Drop

- **Pressure Drop, psid** vs. **Liquid Flow, gpm/ft²**
- **Viscosity:** 100 cp, 50 cp, 20 cp, 10 cp, 5 cp, 2 cp, 1 cp

Air Flow vs. Pressure Drop

- **Pressure Drop, psid** vs. **Air Flow, acfm/ft²**

Notes:
1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorr.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 20 Issued: 06/25/10
Type: Pressed Disc
Alloy: 316LSS
Thickness: 0.125 inches

<table>
<thead>
<tr>
<th>Manufacturing Specifications</th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>Liquid, K_L</td>
<td>Liquid Efficiency</td>
</tr>
<tr>
<td>5.0 - 7.0</td>
<td>0.22</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>Gas, K_G</td>
<td>90% at 18 µm</td>
</tr>
<tr>
<td>4.5</td>
<td>3.8</td>
<td>99% at 22 µm</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td></td>
<td>99.9% at 30 µm</td>
</tr>
<tr>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid =

$$K_L (Flux, \text{gpm/ft}^2) (Visc, \text{cp}) (Thck, \text{inch})$$

Gas: Pressure Drop, psid =

$$K_G (Flux, \text{acfm/ft}^2) (Visc, \text{cp}) (Thck, \text{inch})$$

Liquid Efficiency:
- 90% at 18 µm
- 99% at 22 µm
- 99.9% at 30 µm

Air Efficiency:
- Tested at flux of 6 acfm/ft²
- 90% at 5 µm
- 99% at 9 µm
- 99.9% at 15 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:
1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 40
Type: Pressed Disc
Alloy: 316LSS
Thickness: 0.125 inches

Issued: 06/25/10

Manufacturing Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>3.0 - 4.0</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>3.1</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>2.2</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Permeability Coefficient

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid, (K_L)</td>
<td>0.15</td>
</tr>
<tr>
<td>Gas, (K_G)</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid =

\[(K_L \times \text{Flux, gpm/ft}^2 \times \text{Visc, cp} \times \text{Thck, inch}) \]

Gas: Pressure Drop, psid =

\[(K_G \times \text{Flux, acfm/ft}^2 \times \text{Visc, cp} \times \text{Thck, inch}) \]

Particle Removal Efficiency

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Efficiency</td>
<td></td>
</tr>
<tr>
<td>90% at 22 µm</td>
<td></td>
</tr>
<tr>
<td>99% at 32 µm</td>
<td></td>
</tr>
<tr>
<td>99.9% at 40 µm</td>
<td></td>
</tr>
</tbody>
</table>

Testing per ASTM F795

Air Efficiency

90% at 10 µm	
99% at 20 µm	
99.9% at 40 µm	

Tested at flux of 6 acfm/ft²

Notes:

1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula

Notes:

1 - Tests run with air at 70 °F
2 - Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 100
Type: Pressed Disc
Alloy: 316LSS
Thickness: 0.125 inches

Issued: 06/25/10

Manufacturing Specifications
- Bubble Point, inch water: 0.5 - 1.5
- Minimum Tensile, kpsi: 1.1
- Yield Strength, kpsi: 0.9
- Young's Modulus, x 10^6 psi: 1.3

Permeability Coefficient
- Liquid, \(K_L \): 0.045
- Gas, \(K_G \): 0.50

Liquid: Pressure Drop, psid =
\((K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

Gas: Pressure Drop, psid =
\((K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

Particle Removal Efficiency
- Liquid Efficiency: Testing per ASTM F795
 - 90% at 45 µm
 - 99% at 95 µm
 - 99.9% at 140 µm

Air Efficiency: Tested at flux of 6 acfm/ft²
- 90% at 18 µm
- 99% at 35 µm
- 99.9% at 90 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:
1. Tests run with air at 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.

mott corporation
84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com