Mott Porous Metal Data Sheet

Media Grade: 0.5
Type: Pressed Cups
Alloy: 316LSS
Outer Diameter: 0.5 inches
Inner Diameter: 0.250 inches
Length: 1.0 inches

Manufacturing Specifications
Bubble Point, inch of Hg 3.0 - 3.9
Minimum Tensile, kpsi 21.1
Yield Strength, kpsi 11.5
Young’s Modulus, x 10^6 psi 8.3

Permeability Coefficient
Liquid, K_L 14.5
Gas, K_G 160

Particle Removal Efficiency
Liquid Efficiency
Testing per ASTM F795
90% at 0.8 µm
99% at 1.4 µm
99.9% at 1.8 µm

Gas: Pressure Drop, psid
(K_G)(Flux, acfm/ft²)(Visc, cp)(Thck, inch)

Air Efficiency
Tested at flux of 6 acfm/ft²
>90% for all particle sizes
>99% for all particle sizes
>99.9% for all particle sizes

Notes:
1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula

Notes:
1 - Tests run with air 70 °F
2 - Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 2
Type: Pressed Cups
Alloy: 316LSS
Outer Diameter: 0.5 inches
Inner Diameter: 0.250 inches
Length: 1.0 inches

Manufacturing Specifications
- **Bubble Point, inch water:** 17.0 - 24.0
- **Minimum Tensile, kpsi:** 12.8
- **Yield Strength, kpsi:** 7.2
- **Young’s Modulus, x 10^6 psi:** 5.1

Permeability Coefficient
- **Liquid:** $K_L = 1.7$
- **Gas:** $K_G = 21$

Liquid: Pressure Drop, psid =

\[
(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Gas: Pressure Drop, psid =

\[
(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Particle Removal Efficiency
- **Liquid Efficiency:**
 - 90% at 3.5 µm
 - 99% at 5 µm
 - 99.9% at 8 µm
- **Air Efficiency:**
 - 90% at 0.2 µm
 - 99% at 0.4 µm
 - 99.9% at 1.3 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

![Graph](image)

Liquid Flow, gpm/ft² vs. Pressure Drop, psid

- 100 cp
- 50 cp
- 20 cp
- 10 cp
- 5 cp
- 2 cp
- 1 cp

Air Flow, acfm/ft² vs. Pressure Drop, psid

- 10
- 1

Flow Characteristics on these data sheets are typical and should be used for general reference only.

Notes:
1. Tests run with air 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Mott Corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com
Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Pressed Cups</td>
</tr>
<tr>
<td>Alloy:</td>
<td>316LSS</td>
</tr>
<tr>
<td>Outer Diameter:</td>
<td>0.5 inches</td>
</tr>
<tr>
<td>Inner Diameter:</td>
<td>0.250 inches</td>
</tr>
<tr>
<td>Length:</td>
<td>1.0 inches</td>
</tr>
</tbody>
</table>

Manufacturing Specifications
- **Bubble Point, inch water**: 13.0 - 16.9
- **Minimum Tensile, kpsi**: 9.5
- **Yield Strength, kpsi**: 6.8
- **Young’s Modulus, x 10^6 psi**: 3.7

Permeability Coefficient
- **Liquid, \(K_L \)**: 1.1
- **Gas, \(K_G \)**: 12.5

Liquid: Pressure Drop, psid =
\[
(K_L \cdot \text{Flux, gpm/ft}^2 \cdot \text{Visc, cp} \cdot \text{Thick, inch})
\]

Gas: Pressure Drop, psid =
\[
(K_G \cdot \text{Flux, acfm/ft}^2 \cdot \text{Visc, cp} \cdot \text{Thick, inch})
\]

Particle Removal Efficiency
- **Liquid Efficiency**
 - 90% at 4.5 \(\mu \)m
 - 99% at 7 \(\mu \)m
 - 99.9% at 11 \(\mu \)m
- **Gas Efficiency**
 - Tested at flux of 6 acfm/ft²
 - 90% at 0.5 \(\mu \)m
 - 99% at 1.3 \(\mu \)m
 - 99.9% at 3.5 \(\mu \)m

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 10
Type: Pressed Cups
Alloy: 316LSS
Outer Diameter: 0.5 inches
Inner Diameter: 0.250 inches
Length: 1.0 inches

Manufacturing Specifications
- Bubble Point, inch water: 7.5 - 10.9
- Minimum Tensile, kpsi: 5.0
- Yield Strength, kpsi: 3.7
- Young’s Modulus, x 10^6 psi: 2.9

Permeability Coefficient
- Liquid, \(K_L \): 0.56
- Gas, \(K_G \): 7.0

Liquid: Pressure Drop, psid =
\((K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

Gas: Pressure Drop, psid =
\((K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

Particle Removal Efficiency
- Liquid Efficiency: Testing per ASTM F795
 - 90% at 9 μm
 - 99% at 14 μm
 - 99.9% at 18 μm

- Air Efficiency: Tested at flux of 6 acfm/ft²
 - 90% at 3.5 μm
 - 99% at 6 μm
 - 99.9% at 10 μm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics on these data sheets are typical and should be used for general reference only.

Flow Characteristics:
- Liquid Flow, gpm/ft² vs. Pressure Drop, psid
- Air Flow, acfm/ft² vs. Pressure Drop, psid

Notes:
1. Tests run with air 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

mott corporation
84 Spring Lane, Farmington, CT 06032-3160
860-747-6333 Fax 860-747-6739
www.mottcorp.com
Manufacture Specifications

- **Type:** Pressed Cups
- **Alloy:** 316LSS
- **Outer Diameter:** 0.5 inches
- **Inner Diameter:** 0.250 inches
- **Length:** 1.0 inches

Permeability Coefficient

- **Liquid,** K_L: 0.43
- **Gas,** K_G: 3.3

Liquid: Pressure Drop, psid

\[
(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Gas: Pressure Drop, psid

\[
(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Particle Removal Efficiency

- **Liquid Efficiency**
 - 90% at 18 µm
 - 99% at 22 µm
 - 99.9% at 30 µm

- **Air Efficiency**
 - Tested at flux of 6 acfm/ft²
 - 90% at 5 µm
 - 99% at 9 µm
 - 99.9% at 15 µm

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

<table>
<thead>
<tr>
<th>Media Grade:</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Pressed Cups</td>
</tr>
<tr>
<td>Alloy:</td>
<td>316LSS</td>
</tr>
<tr>
<td>Outer Diameter:</td>
<td>0.5 inches</td>
</tr>
<tr>
<td>Inner Diameter:</td>
<td>0.250 inches</td>
</tr>
<tr>
<td>Length:</td>
<td>1.0 inches</td>
</tr>
</tbody>
</table>

Manufacturing Specifications

Bubble Point, inch water: 3.0 - 4.0
Minimum Tensile, kpsi: 3.1
Yield Strength, kpsi: 2.2
Young’s Modulus, x 10^6 psi: 1.8

Permeability Coefficient

<table>
<thead>
<tr>
<th>Media</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>K_L</td>
</tr>
<tr>
<td>Gas</td>
<td>K_G</td>
</tr>
</tbody>
</table>

Particle Removal Efficiency

<table>
<thead>
<tr>
<th>Media</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td></td>
<td>Tested at 1 gpm/ft²</td>
</tr>
<tr>
<td></td>
<td>90% at 22 µm</td>
</tr>
<tr>
<td></td>
<td>99% at 32 µm</td>
</tr>
<tr>
<td></td>
<td>99.9% at 40 µm</td>
</tr>
<tr>
<td>Air</td>
<td>Tested at flux of 6 acfm/ft²</td>
</tr>
<tr>
<td></td>
<td>90% at 10 µm</td>
</tr>
<tr>
<td></td>
<td>99% at 20 µm</td>
</tr>
<tr>
<td></td>
<td>99.9% at 40 µm</td>
</tr>
</tbody>
</table>

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Graphs:

1. **Liquid Flow vs. Pressure Drop**
 - Graph shows pressure drop in psid for different liquid flow rates (gpm/ft²) and viscosities (cp).
 - Equation: \[P = (K_L) (F, gpm/ft²) (V, cp) (T, inch) \]

2. **Air Flow vs. Pressure Drop**
 - Graph shows pressure drop in psid for different air flow rates (acfm/ft²) and viscosities (cp).
 - Equation: \[P = (K_G) (F, acfm/ft²) (V, cp) (T, inch) \]

Notes:

1. Tests run with air 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics:

- Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 100
Type: Pressed Cups
Alloy: 316LSS
Outer Diameter: 0.5 inches
Inner Diameter: 0.250 inches
Length: 1.0 inches

Manufacturing Specifications
Bubble Point, inch water 0.5 - 1.5
Minimum Tensile, kpsi 1.1
Yield Strength, kpsi 0.9
Young’s Modulus, x 10^6 psi 1.3

Permeability Coefficient
Liquid, \(K_L \) 0.15
Gas, \(K_G \) 0.70

\[\text{Liquid: Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \]

\[\text{Gas: Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \]

Particle Removal Efficiency

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Testing per ASTM F795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Tested at 1 gpm/ft^2</td>
</tr>
<tr>
<td>90%</td>
<td>at 45 µm</td>
</tr>
<tr>
<td>99%</td>
<td>at 90 µm</td>
</tr>
<tr>
<td>99.9%</td>
<td>at 140 µm</td>
</tr>
</tbody>
</table>

Air Efficiency

90% at 18 µm
99% at 35 µm
99.9% at 90 µm

Notes:
1. Tests run with air 70 °F
2. Tests run with upstream pressure exhausting to atmosphere

Flow Characteristics on these data sheets are typical and should be used for general reference only.