Mott Porous Metal Data Sheet

Media Grade: 10
Issued: 06/25/10

Type: Iso Pressed Tube

Alloy: 316LSS

Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches

<table>
<thead>
<tr>
<th>Manufacturing Specifications</th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>Liquid, K_L</td>
<td>Liquid Efficiency</td>
</tr>
<tr>
<td></td>
<td>7.5 - 10.9</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>Gas, K_G</td>
<td>90% at 10 µm</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td></td>
<td>99% at 15 µm</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>6.7</td>
<td>99.9% at 20 µm</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>2.9</td>
<td></td>
</tr>
</tbody>
</table>

Permeability Coefficient

Liquid: Pressure Drop, psid =

\[
(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Gas: Pressure Drop, psid =

\[
(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Particle Removal Efficiency

Liquid Efficiency

- 90% at 10 µm
- 99% at 15 µm
- 99.9% at 20 µm

Air Efficiency

- 90% at 4.5 µm
- 99% at 8 µm
- 99.9% at 13 µm

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:

1. Tests run with air at 70 °F

Flow Characteristics on these data sheets are typical and should be used for general reference only.