Mott Porous Metal Data Sheet

Media Grade: 0.1
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

Manufacturing Specifications
- **Bubble Point, inch of Hg:** 7.0 - 9.0
- **Minimum Tensile, kpsi:** 30.6
- **Yield Strength, kpsi:** 28.8
- **Young's Modulus, x 10^6 psi:** 14.7

Permeability Coefficient
- **Liquid, K_L:** 110
- **Gas, K_G:** 1000

Pressure Drop Formulas
- **Liquid:** $Pressure\ Drop, \ psi = (K_L)(Flux, \ gpm/ft^2)(Visc, \ cp)(Thck, \ inch)$
- **Gas:** $Pressure\ Drop, \ psi = (K_G)(Flux, \ acfm/ft^2)(Visc, \ cp)(Thck, \ inch)$

Particle Removal Efficiency

<table>
<thead>
<tr>
<th>Particle Efficiency</th>
<th>Liquid Efficiency</th>
<th>Testing per ASTM F795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>30.6</td>
<td>Tested at 1 gpm/ft^2</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>28.8</td>
<td>90% at 0.14 µm</td>
</tr>
<tr>
<td>Young's Modulus, x 10^6 psi</td>
<td>14.7</td>
<td>99% at 0.35 µm</td>
</tr>
<tr>
<td>Air Efficiency</td>
<td></td>
<td>99.9% at 0.6 µm</td>
</tr>
</tbody>
</table>

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Flow Characteristics

Notes:
1. Tests run with air at 70 °F

mott corporation
84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.motcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 0.2
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

<table>
<thead>
<tr>
<th>Manufacturing Specifications</th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch of Hg</td>
<td>Liquid, K_L</td>
<td>Liquid Efficiency</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>Gas, K_G</td>
<td>Testing per ASTM F795</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td></td>
<td>90% at 0.4 μm</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td></td>
<td>99% at 0.8 μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.9% at 1.2 μm</td>
</tr>
</tbody>
</table>

Liquid: Pressure Drop, psid =

$$ (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) $$

Gas: Pressure Drop, psid =

$$ (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) $$

Flow Characteristics on these data sheets are typical and should be used for general reference only.

Notes:

1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottoorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 0.5
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches

Issued: 06/25/10

Manufacturing Specifications
Bubble Point, inch of Hg 3.0 - 3.9
Minimum Tensile, kpsi 18.9
Yield Strength, kpsi 17.1
Young’s Modulus, x 10^6 psi 8.3

Permeability Coefficient
Liquid, K_L 20
Gas, K_G 154

Particle Removal Efficiency
Liquid Efficiency
- 90% at 0.9 µm
- 99% at 1.6 µm
- 99.9% at 2 µm

Gas: Pressure Drop, psid =
(K_G)(Flux, acfm/ft²)(Visc, cp)(Thick, inch)

Air Efficiency
- >90% for all particle sizes
- >99% for all particle sizes
- 99.9% at 0.25 µm

Notes:
1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula

Pressure Drop, psid

100
10
1
Liquid Flow, gpm/ft²

100, 50, 20, 10, 5, 2, 1 cp

Notes:
1 - Tests run with air at 70 °F

mott corporation
84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-8739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Media Grade: 1
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches

Manufacturing Specifications
- **Bubble Point, inch of Hg**: 2.0 - 2.5
- **Minimum Tensile, kpsi**: 15.3
- **Yield Strength, kpsi**: 13.5
- **Young’s Modulus, x 10^6 psi**: 6.5

Permeability Coefficient
- **Liquid, K_L**: 9.2
- **Gas, K_G**: 60

Liquid: Pressure Drop, psid =
\[(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})\]

Gas: Pressure Drop, psid =
\[(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})\]

Particle Removal Efficiency
- **Liquid Efficiency**
 - 90% at 1.4 µm
 - 99% at 2 µm
 - 99.9% at 3 µm
- **Testing per ASTM F795**
- **Air Efficiency**
 - Tested at flux of 6 acfm/ft²
 - >90% for all particle sizes
 - 99% at 0.25 µm
 - 99.9% at 0.4 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:
1. Tests run with air at 70 °F.
Mott Porous Metal Data Sheet

Media Grade: 2
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

Manufacturing Specifications
- **Bubble Point, inch water**: 17.0 - 24.0
- **Minimum Tensile, kpsi**: 11.9
- **Yield Strength, kpsi**: 10.9
- **Young’s Modulus, x 10^6 psi**: 5.1

Permeability Coefficient
- **Liquid, K_L**: 4.9
- **Gas, K_G**: 33

Particle Removal Efficiency
- **Liquid Efficiency**: Testing per ASTM F795
 - 90% at 4 µm
 - 99% at 5.5 µm
 - 99.9% at 9 µm

Air Efficiency: Tested at flux of 6 acfm/ft²
- 90% at 0.3 µm
- 99% at 0.6 µm
- 99.9% at 2 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Liquid: Pressure Drop, psid

\[
\text{Liquid: Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Gas: Pressure Drop, psid

\[
\text{Gas: Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})
\]

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 5
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

Manufacturing Specifications
- Bubble Point, inch water: 13.0 - 16.9
- Minimum Tensile, kpsi: 8.3
- Yield Strength, kpsi: 7.6
- Young’s Modulus, x 10^6 psi: 3.7

Permeability Coefficient
- Liquid, K_L: 2.4
- Gas, K_G: 11

Particle Removal Efficiency
- Liquid Efficiency: 90% at 5 µm, 99% at 8 µm, 99.9% at 13 µm
- Gas Efficiency: Tested at 1 gpm/ft²
- Air Efficiency: 90% at 0.8 µm, 99% at 2 µm, 99.9% at 5 µm

Notes:
1 - Tests run at 70 °F
2 - Tests run with water, other curves generated using Liquid Formula

Liquid: Pressure Drop, psid = (K_L)(Flux, gpm/ft²)(Visc, cp)(Thck, inch)
Gas: Pressure Drop, psid = (K_G)(Flux, acfm/ft²)(Visc, cp)(Thck, inch)

Notes:
1 - Tests run with air at 70 °F

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com

Sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 10
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches

Issued: 06/25/10

Manufacturing Specifications
- Bubble Point, inch water: 7.5 - 10.9
- Minimum Tensile, kpsi: 6.7
- Yield Strength, kpsi: 5.4
- Young’s Modulus, x 10^6 psi: 2.9

Permeability Coefficient
- Liquid, \(K_L \): 1.4
- Gas, \(K_G \): 5.3

Particle Removal Efficiency
- Liquid Efficiency: Testing per ASTM F795
 - 90% at 10 µm
 - 99% at 15 µm
 - 99.9% at 20 µm
- Air Efficiency: Tested at flux of 6 acfm/ft^2
 - 90% at 4.5 µm
 - 99% at 8 µm
 - 99.9% at 13 µm

\textbf{Notes:}
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

\textbf{Flow Characteristics:}
- Liquid: \(\text{Pressure Drop, psid} = (K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)
- Gas: \(\text{Pressure Drop, psid} = (K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \)

\textbf{Notes:}
1. Tests run with air at 70 °F

\textbf{mott corporation}
84 Spring Lane, Farmington, CT 06032-3159
666-747-6333 Fax 860-747-6739
www.mottcorp.com

\textit{Flow Characteristics on these data sheets are typical and should be used for general reference only.}
Mott Porous Metal Data Sheet

Media Grade: 20
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.375 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

Manufacturing Specifications
- **Bubble Point, inch water:** 5.0 - 7.0
- **Minimum Tensile, kpsi:** 5.1
- **Yield Strength, kpsi:** 4.5
- **Young's Modulus, x 10^6 psi:** 2.3

Permeability Coefficient
- Liquid, \(K_L \): 1.0
- Gas, \(K_G \): 4.6

Particle Removal Efficiency
- **Liquid Efficiency**
 - 90% at 20 µm
 - 99% at 25 µm
 - 99.9% at 35 µm

- **Gas Efficiency**
 - 90% at 8 µm
 - 99% at 12 µm
 - 99.9% at 20 µm

Testing
- **Testing per ASTM F795**
 - Tested at 1 gpm/ft²

Flow Characteristics
- **Liquid: Pressure Drop, psid**
 \[(K_L)(Flux, \text{ gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \]

- **Gas: Pressure Drop, psid**
 \[(K_G)(Flux, \text{ acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch}) \]

Notes:
1. Tests run at 70 °F
2. Tests run with air at 70 °F

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Mott Porous Metal Data Sheet

Media Grade: 40
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.344 inches
Outside Diameter: 0.500 inches
Issued: 06/25/10

Manufacturing Specifications
- Bubble Point, inch water: 3.0 - 4.0
- Minimum Tensile, kpsi: 3.6
- Yield Strength, kpsi: 3.1
- Young's Modulus, x 10^6 psi: 1.8

Permeability Coefficient
- **Liquid:** $K_L = 0.40$
- **Gas:** $K_G = 2.6$

Particle Removal Efficiency
- **Liquid Efficiency:**
 - 90% at 25 µm
 - 99% at 35 µm
 - 99.9% at 45 µm
- **Gas Efficiency:**
 - 90% at 12 µm
 - 99% at 25 µm
 - 99.9% at 45 µm

Calculations
- **Liquid: Pressure Drop, psid** =

 $$(K_L)(\text{Flux, gpm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$$

- **Gas: Pressure Drop, psid** =

 $$(K_G)(\text{Flux, acfm/ft}^2)(\text{Visc, cp})(\text{Thck, inch})$$

Graphs

Liquid Flow vs. Pressure Drop
- Flow Characteristics on these data sheets are typical and should be used for general reference only.

Air Flow vs. Pressure Drop
- Flow Characteristics on these data sheets are typical and should be used for general reference only.

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

mott corporation

84 Spring Lane, Farmington, CT 06032-3159
860-747-6333 Fax 860-747-6739
www.mottcorp.com

Flow Characteristics on these data sheets are typical and should be used for general reference only.
Media Grade: 100
Type: Iso Pressed Tube
Alloy: 316LSS
Inside Diameter: 0.314 inches
Outside Diameter: 0.500 inches

<table>
<thead>
<tr>
<th>Manufacturing Specifications</th>
<th>Permeability Coefficient</th>
<th>Particle Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Point, inch water</td>
<td>Liquid, K_L</td>
<td>Liquid Efficiency</td>
</tr>
<tr>
<td>Minimum Tensile, kpsi</td>
<td>0.20</td>
<td>90% at 50 µm</td>
</tr>
<tr>
<td>Yield Strength, kpsi</td>
<td>2.8</td>
<td>99% at 100 µm</td>
</tr>
<tr>
<td>Young’s Modulus, x 10^6 psi</td>
<td>1.3</td>
<td>99.9% at 150 µm</td>
</tr>
</tbody>
</table>

Liquid Efficiency
- Tested per ASTM F795
- Tested at 1 gpm/ft²

Gas Efficiency
- 90% at 20 µm
- 99% at 40 µm
- 99.9% at 100 µm

Notes:
1. Tests run at 70 °F
2. Tests run with water, other curves generated using Liquid Formula

Notes:
1. Tests run with air at 70 °F

Flow Characteristics on these data sheets are typical and should be used for general reference only.